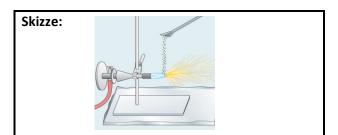
# Affinitätsreihe

**Fragestellung:** Warum rosten manche Metalle, andere aber nicht?

**Materialien:** Brenner, Magnesiarinne, Stativ, Feuerzeug, Spatel


**Chemikalien:** verschiedene Metallpulver (Zink, Eisen Kupfer, Magnesium)



### Video 1

## Durchführung:

Der Brenner wird waagerecht in das Stativ eingespannt. Eine Spatelspitze eines Metallpulvers wird auf die Spitze der Magnesiarinne gegeben und durch leichtes Klopfen in die Flamme gerieselt. Dies wird mit allen Pulvern wiederholt.



#### **Beobachtung:**

| Metall    | Beobachtung der Leuchterscheinung |
|-----------|-----------------------------------|
| Zink      | weiße Flamme, explosions artig    |
| Kupfer    | grüne Flamme, gleichmäßig         |
| Eisen     | orange Flamme, zindelnd           |
| Magnesium | weiße Flamme, explosions artig    |

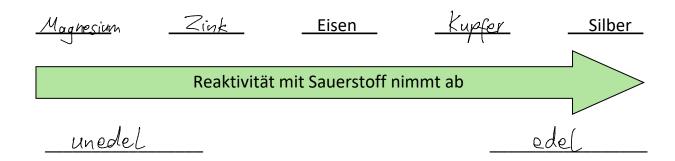
### **Auswertung:**

1. Ergänze die Lücken im Merksatz zum Bindungsbestreben:

Unterschiedliche Metalle reagieren unterschiedlich heftig mit Sauerstoff.

Je heller/starker und heißer das Metall brennt, desto höher ist sein Bindungsbestreben zu Sauerstoff und desto mehr Energie wird frei.

2. Formuliere für die Reaktionen der vier Metalle mit Sauerstoff Reaktionsgleichungen. Gehe bei Kupfer von einer Wertigkeit von II aus. Benenne alle vier Produkte.


a. Zink: 
$$2Z_{n_{(s)}} + O_{2_{(s)}} \longrightarrow 2Z_{n_{(s)}}$$

b. Kupfer: 
$$2 C_{u_{(s)}} + O_{Z_{(s)}} \longrightarrow 2 C_u O_{(s)}$$

c. Eisen: 
$$2Fe_{G} + O_{2G} \longrightarrow 2FeO_{G}$$

| d. | Magnesium: | 2 Mgs+ | O <sub>2</sub> | > 2 Mg O <sub>(s)</sub> |
|----|------------|--------|----------------|-------------------------|
|----|------------|--------|----------------|-------------------------|

3. Die untersuchten Metalle reagieren unterschiedlich heftig mit Sauerstoff. Bringe die Metalle nach ihrem Bestreben mit Sauerstoff zu reagieren in eine Reihenfolge. Da Silber sehr teuer ist, wurde dies nicht experimentell untersucht, aber bereits in die Reihe eingefügt.



- 4. Ergänze in der obigen Abbildung die Begriffe edel und unedel.
- 5. Die oben dargestellte Reihenfolge der Metalle wird Affinitätsreihe der Metalle genannt. Die Affinität (lat. *affinitas*, Verwandtschaft) beschreibt das Bestreben eines Stoffes mit einem anderen Stoff eine Reaktion einzugehen.
  - a. Beschreibe die Affinitätsreihe durch einen "je unedler desto…" Zusammenhang.

| Je   | unedler,   | desto      | stärker      | ist die | Reakt     | a'on mit | Sauprstoff | and derto         |
|------|------------|------------|--------------|---------|-----------|----------|------------|-------------------|
| höhe | er ist die | Affinition | it (und      | desto   | einfacher | können   | Elektronen | abgegeben werden) |
|      |            | •          | ellung diese |         |           |          |            |                   |

Manche Metalle rosten eher, da sie Eine höhere Affinität zu Sauerstoff haben, also stärker mit Sauerstoff reagieren.

6. Im Experiment haben wir nur wenige Metalle untersucht. Andere Metalle lassen sich ebenfalls in diese Reihe einsortieren. Recherchiere im Internet und bringe die folgenden Metalle in die korrekte Reihenfolge: Li Ag Pt Ca Zn Mg Mn Cr Na Au Fe Al Ni Cu



| We | iter | führ | end  | e Aı | ufga          | be: |
|----|------|------|------|------|---------------|-----|
| ** |      |      | CIIG |      | 41 <u>5</u> U | ~~  |

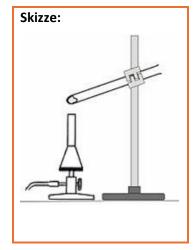
| 7. ( | Maria  | behauptet:   | "Wenn     | Eisen   | eine  | größere  | Affinität   | zu   | Sauerstoff  | hat | als  | Kupfer, | dann   | kann |
|------|--------|--------------|-----------|---------|-------|----------|-------------|------|-------------|-----|------|---------|--------|------|
|      | eleme  | ntares Eisen | dem Ku    | pferoxi | d der | Sauersto | off entziel | nen. | " Entwickle | ein | Ехре | riment, | mit de | m du |
|      | Marias | These über   | orüfen ka | annst.  |       |          |             |      |             |     |      |         |        |      |
|      |        |              |           |         |       |          |             |      |             |     |      |         |        |      |

| Kupferoxid und Eisen in eine       | m Gefäß erhitzen. Abkühlen                                          |
|------------------------------------|---------------------------------------------------------------------|
| Lassen, mit Salzsäure auswaschen / | m Gefriß erhitzen. Abkühlen<br>229 (sagt Google, ich weiß es nicht) |
| <del></del>                        | <del></del>                                                         |
|                                    |                                                                     |
|                                    |                                                                     |

Chemie Klasse 9/10 FC 6. Redoxreaktionen Seite 4

# Reaktion eines Metalls mit einem Metalloxid




Fragestellung: Kann elementares Eisen den Sauerstoff aus Kupferoxid entziehen?

**Materialien:** Brenner, Reagenzglas, Stativ, Feuerzeug, Spatel, Mörser oder Porzellanschale

Chemikalien: Eisenpulver, Kupfer(II)oxid

Video 2

Durchführung:
Elementares Eisen wird zusammen mit Kupferszid in
einem Reagenzglas stark erhitzt. Nach dem Aufglühen der
Stoffe wird die Erhitzung angehabten und die Stoffe kühlen sich ab.
Anschließend werden die ausgehärteten Stoffe mit einem
Mörser aus dem Reagenzglas gelöst.



**Beobachtung:** 

Beide Stoffe sind zu einem festen Klumpen geworden, ein Teil ist rot und aus Eisen und Kupfer oxid wird Kupfer und Eisenoxid.

Auswertung:

1. Woran kannst du erkennen, dass die Reaktion stattgefunden hat? Beschreibe.

Da die Stoffe am Ende einen anderen Aggregatszuctand, aber vor allem eine andere Farbe haben und das Aufglühen als Energiewandlung eindeutig dafür spricht, fand eine Reaktion Statt.

2. Formuliere die Reaktionsgleichung.

2 Cu O+ Fe (y) -> 2 Cuy+ Fe Og j exotherm

3. Das Experiment wird erneut durchgeführt. Diesmal werden Kupfer und Eisenoxid verwendet. Entscheide, ob eine Reaktion stattfindet und begründe deine Entscheidung.

Es findet keine Reaktion statt, da Eisen eine höhere Affinitiet zu Sauerstoff besitzt als Kupfer. Somit behält as ebendiese Atome und ein Austausch findet nicht statt.

\_\_\_\_\_\_

4. Begründe, warum Natrium oder Eisen in der Natur immer in Verbindungen vorliegen, Gold hingegen elementar vorkommt.

Da Natrium und Eisen deutlich reaktiver sind als z.B. Gold, reagieren sie sofort mit beispielsweise und bleiben nicht in ihrem elementaren Zustand. Gold hat eine sehr niedrige Affinität und es kommt daher nicht zu Reaktioen. So bleibt Gold im elementaren Zustand.

- 5. Prüfe mit Hilfe der Affinitätsreihe (AB "Affinitätsreihe" S.2), ob die folgenden Reaktionen möglich sind:
  - a. Eisenoxid und Magnesium

(ja)/ nein

b. Kupferoxid und Zink

(ja) nein

c. Zinkoxid und Silber

ja // nein

d. Magnesiumoxid und Kupfer

ja // nein

e. Silberoxid und Magnesium

ja ) nein

#### WEITERGEDACHT



Erhitzt man Kupferoxid mit Holzkohlepulver (elementarer Kohlenstoff), glüht das Gemisch hell auf. Es bildet sich elementares Kupfer. Außerdem entweicht ein Gas, das Kalkwasser trübt.

Bei dieser Reaktion wird ebenfalls ein Oxid zerlegt und es bildet sich ein neues Oxid. A) Deute die Beobachtungen. B) Formuliere die Reaktionsgleichung und stelle die Reaktion im Teilchenbild dar.



A) Dass das Gemisch hell aufglüht, heißt, dass eine deutliche Reaktion stattfindet. Elementarer Kohlenstoff hat als eine höhere Affinität als Kupfer. Das entweichende Gas ist CO2 (Kohlenstoffdioxid).

 $\beta \qquad 2 CuO_{cs} + C_{cs} \longrightarrow co_{2cg} + 2Cu_{cs}$